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Review: Transformer



Recall

Towards the development of the Transformermodel.
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RNNs: Lack of parallelizability

• RNNs process input step by step — each hidden state
depends on the previous one.

• GPUs are great at performing many independent
computations in parallel, but RNNs don’t allow this because
future states can’t be computed until past states are done.

• As a result, training RNNs on very large datasets becomes
slow and inefficient.
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Transformer and self-attention

• In Transformers, attention occurs within a single sentence —
all words attend to all words in the previous layer.
(Self-attention + Cross-attention)

• As a result, Transformers overcome both
long-distance dependency and lack of parallelizability.

• Notes. This was NOT an entirely new ways of looking NLP
problems (e.g., probabilistic language models → neural
network), but made a huge progress in the field.
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The structure of the Transformer (Vaswani et al., 2017):
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We can see that the same kinds of blocks are repeatedly
stacked.
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Embedding layer
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Multi-head attention
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Add & Norm layer
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and also the Feed-Forward layer.
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So, it’s actually made up of a few components that are
repeatedly stacked.
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Which of these do you think is the most important feature of the
Transformer model?
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The Transformer’s multi-head attention is (1) different from the
attention mechanism used in traditional seq2seq models.
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The Transformer’s attention (2) captures the relationships
between words within the same input sentence.
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The structure of the multi-head attention mechanism used for
self-attention looks like this:
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We make three copies of the input + positional encoding matrix.

This is done to create Query (Q), Key (K), and Value (V) matrices,
each representing a different projection of the same input for the
attention mechanism.
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To obtain the Q matrix, we create the following 6×6 weight matrix
(randomly initialized).
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And then we perform matrix multiplication to obtain the Q
(Query) matrix.
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To compute the K (Key) matrix, we create another 6×6 weight
matrix (randomly initialized) and multiply it with the input.
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Using the same process, we perform another matrix
multiplication to obtain the V (Value) matrix.
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Now, we have the three inputs of the multi-head attention layer:
Q (Query), K (Key), and V (Value).
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Next, we perform the matrix multiplication between Q and K. The
formula for this operation is as follows:
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When we plug in the matrix values and calculate,
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we can obtain the result as follows:
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Next, we apply scaling, which divides the matrix by
√

6, since in
this example the value of 𝑑model is 6.
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The next softmax layer converts the matrix values into
probabilities.
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This 3×3 matrix represents the self-attention weights, which
shows how each word in the input is related to every other.
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Word pairs with higher relevance receive higher attention values,
while those with lower relevance receive smaller values. To be
specific...
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• Each row: how much a query word attends to other words
(where it sends attention)

• Each column: how much a key words is attended to by other
words (where it receives attention)
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This self-attention mechanism is the core structure.
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So, what about the final matrix multiplication?
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We multiply this by the V matrix to obtain the final output — a
self-attended embedding that combines (1) input, (2) positional,
and (3) attention information.
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Focus on to the Decoder.
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TheMasked Multi-Head Attention operation in the decoder is
almost the same as in the encoder.
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We multiply the Q and K matrices to create the attention matrix.
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We then scale the matrix by dividing it by
√

6, just as before, so
that the range of values changes accordingly.
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The goal of the transformer decoder is to generate the output
word sequence, one token at a time (recall: language modeling).
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While the encoder needs to consider all tokens in the input
sentence to understand the full meaning,
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the decoder generates output one word at a time.
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Therefore, it’s natural that the decoder should NOT attend to
words that haven’t been generated yet.
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To reflect this characteristic, the decoder applies a masking
mechanism during training.
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The key idea is to hide future tokens so they do not affect the
current prediction.
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When this masking algorithm is applied to the attention matrix,
we get:
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We add –inf to the masked positions because, after passing
through the softmax layer, –inf becomes 0, effectively eliminating
attention to those positions.
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Feeding this matrix into the softmax layer gives us:
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Then we multiply the two matrices as follows:
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The decoder’s secondmulti-head attention operates the same
way as the encoder’s, except for the inputs.
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Here, the values of 𝐾 and 𝑉 are derived from the encoder’s final
output, multiplied by a 6×6 matrix.
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The value of 𝑄 comes from the output of the decoder’s previous
Add & Norm layer. In other words, the decoder determines which
parts of the encoder’s output (K, V) to attend to, based on the
context it has generated so far (Q)-similar to attention in RNNs.
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Using a loss function (e.g., cross-entropy) and backpropagation,
the model updates all weight parameters across every layer —
this is the learning process of the Transformer.
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Different transformers



Transformer types

• Encoder-only models use only the encoder stack to
understand text.

• Bidirectional attention (see both left and right context)
• Tasks: text classification, NER, POS tagging
• Examples: BERT, RoBERTa, ALBERT
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Transformer types

• Decoder-only models use only the decoder stack to
generate text.

• Left-to-right (causal) attention — cannot see future tokens
• Tasks: text generation, dialogue, code completion
• Examples: GPT, LLaMA, Gemini, Claude
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Transformer types

• Encoder–Decoder models combine both for
sequence-to-sequence tasks.

• Encoder encodes the input; decoder generates the output
• Tasks: translation, summarization
• Examples: T5, BART, mBART
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LLMs in 2025



Sharing Thoughts

• Take a few minutes to share your thoughts or reflections on
today’s session.

• Contribute one or two points to the shared slide deck (click
here, or a link in the course website) - this could be:

• Something new you learned about LLMs or Transformers
• A question or idea you’d like to explore further
• An observation about how these models relate to real-world
NLP tasks

58
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Wrap-up

• We explored recent advances in large language models
(LLMs) as of 2025.

• In the lab session, we will further experiment with these
models using Ollama, an open-source platform for running
LLMs locally.
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