
10. LLMs in 2025
LING-581-Natural Language Processing 1

Instructor: Hakyung Sung
October 28, 2025



Table of contents

1. Review: Transformer

2. Different transformers

3. LLMs in 2025

4. Wrap up

1



Review: Transformer



Recall

Towards the development of the Transformermodel.

2



RNNs: Lack of parallelizability

• RNNs process input step by step — each hidden state
depends on the previous one.

• GPUs are great at performing many independent
computations in parallel, but RNNs don’t allow this because
future states can’t be computed until past states are done.

• As a result, training RNNs on very large datasets becomes
slow and inefficient.

3



RNNs: Lack of parallelizability

• RNNs process input step by step — each hidden state
depends on the previous one.

• GPUs are great at performing many independent
computations in parallel, but RNNs don’t allow this because
future states can’t be computed until past states are done.

• As a result, training RNNs on very large datasets becomes
slow and inefficient.

3



RNNs: Lack of parallelizability

• RNNs process input step by step — each hidden state
depends on the previous one.

• GPUs are great at performing many independent
computations in parallel, but RNNs don’t allow this because
future states can’t be computed until past states are done.

• As a result, training RNNs on very large datasets becomes
slow and inefficient.

3



Transformer and self-attention

• In Transformers, attention occurs within a single sentence —
all words attend to all words in the previous layer.
(Self-attention + Cross-attention)

• As a result, Transformers overcome both
long-distance dependency and lack of parallelizability.

• Notes. This was NOT an entirely new ways of looking NLP
problems (e.g., probabilistic language models → neural
network), but made a huge progress in the field.

4



Transformer and self-attention

• In Transformers, attention occurs within a single sentence —
all words attend to all words in the previous layer.
(Self-attention + Cross-attention)

• As a result, Transformers overcome both
long-distance dependency and lack of parallelizability.

• Notes. This was NOT an entirely new ways of looking NLP
problems (e.g., probabilistic language models → neural
network), but made a huge progress in the field.

4



Transformer and self-attention

• In Transformers, attention occurs within a single sentence —
all words attend to all words in the previous layer.
(Self-attention + Cross-attention)

• As a result, Transformers overcome both
long-distance dependency and lack of parallelizability.

• Notes. This was NOT an entirely new ways of looking NLP
problems (e.g., probabilistic language models → neural
network), but made a huge progress in the field.

4



The structure of the Transformer (Vaswani et al., 2017):

5



We can see that the same kinds of blocks are repeatedly
stacked.

6



Embedding layer

7



Multi-head attention

8



Add & Norm layer

9



and also the Feed-Forward layer.

10



So, it’s actually made up of a few components that are
repeatedly stacked.

11



Which of these do you think is the most important feature of the
Transformer model?

12



The Transformer’s multi-head attention is (1) different from the
attention mechanism used in traditional seq2seq models.

13



The Transformer’s attention (2) captures the relationships
between words within the same input sentence.

14



The structure of the multi-head attention mechanism used for
self-attention looks like this:

15



We make three copies of the input + positional encoding matrix.

This is done to create Query (Q), Key (K), and Value (V) matrices,
each representing a different projection of the same input for the
attention mechanism.

16



We make three copies of the input + positional encoding matrix.

This is done to create Query (Q), Key (K), and Value (V) matrices,
each representing a different projection of the same input for the
attention mechanism.

16



To obtain the Q matrix, we create the following 6×6 weight matrix
(randomly initialized).

17



And then we perform matrix multiplication to obtain the Q
(Query) matrix.

18



To compute the K (Key) matrix, we create another 6×6 weight
matrix (randomly initialized) and multiply it with the input.

19



Using the same process, we perform another matrix
multiplication to obtain the V (Value) matrix.

20



Now, we have the three inputs of the multi-head attention layer:
Q (Query), K (Key), and V (Value).

21



Next, we perform the matrix multiplication between Q and K. The
formula for this operation is as follows:

22



When we plug in the matrix values and calculate,

23



we can obtain the result as follows:

24



Next, we apply scaling, which divides the matrix by
√

6, since in
this example the value of 𝑑model is 6.

25



The next softmax layer converts the matrix values into
probabilities.

26



This 3×3 matrix represents the self-attention weights, which
shows how each word in the input is related to every other.

27



Word pairs with higher relevance receive higher attention values,
while those with lower relevance receive smaller values. To be
specific...

28



• Each row: how much a query word attends to other words
(where it sends attention)

• Each column: how much a key words is attended to by other
words (where it receives attention)

29



• Each row: how much a query word attends to other words
(where it sends attention)

• Each column: how much a key words is attended to by other
words (where it receives attention)

29



This self-attention mechanism is the core structure.

30



So, what about the final matrix multiplication?

31



We multiply this by the V matrix to obtain the final output — a
self-attended embedding that combines (1) input, (2) positional,
and (3) attention information.

32



Focus on to the Decoder.

33



TheMasked Multi-Head Attention operation in the decoder is
almost the same as in the encoder.

34



We multiply the Q and K matrices to create the attention matrix.

35



We then scale the matrix by dividing it by
√

6, just as before, so
that the range of values changes accordingly.

36



The goal of the transformer decoder is to generate the output
word sequence, one token at a time (recall: language modeling).

37



While the encoder needs to consider all tokens in the input
sentence to understand the full meaning,

38



the decoder generates output one word at a time.

39



Therefore, it’s natural that the decoder should NOT attend to
words that haven’t been generated yet.

40



To reflect this characteristic, the decoder applies a masking
mechanism during training.

41



The key idea is to hide future tokens so they do not affect the
current prediction.

42



43



44



45



When this masking algorithm is applied to the attention matrix,
we get:

46



We add –inf to the masked positions because, after passing
through the softmax layer, –inf becomes 0, effectively eliminating
attention to those positions.

1
1https://www.youtube.com/shorts/SrJN_hpiuAs 47

https://www.youtube.com/shorts/SrJN_hpiuAs


Feeding this matrix into the softmax layer gives us:

48



Then we multiply the two matrices as follows:

49



The decoder’s secondmulti-head attention operates the same
way as the encoder’s, except for the inputs.

50



Here, the values of 𝐾 and 𝑉 are derived from the encoder’s final
output, multiplied by a 6×6 matrix.

51



The value of 𝑄 comes from the output of the decoder’s previous
Add & Norm layer. In other words, the decoder determines which
parts of the encoder’s output (K, V) to attend to, based on the
context it has generated so far (Q)-similar to attention in RNNs.

52



Using a loss function (e.g., cross-entropy) and backpropagation,
the model updates all weight parameters across every layer —
this is the learning process of the Transformer.

53



54



Different transformers



Transformer types

• Encoder-only models use only the encoder stack to
understand text.

• Bidirectional attention (see both left and right context)
• Tasks: text classification, NER, POS tagging
• Examples: BERT, RoBERTa, ALBERT

55



Transformer types

• Decoder-only models use only the decoder stack to
generate text.

• Left-to-right (causal) attention — cannot see future tokens
• Tasks: text generation, dialogue, code completion
• Examples: GPT, LLaMA, Gemini, Claude

56



Transformer types

• Encoder–Decoder models combine both for
sequence-to-sequence tasks.

• Encoder encodes the input; decoder generates the output
• Tasks: translation, summarization
• Examples: T5, BART, mBART

57



LLMs in 2025



Sharing Thoughts

• Take a few minutes to share your thoughts or reflections on
today’s session.

• Contribute one or two points to the shared slide deck (click
here, or a link in the course website) - this could be:

• Something new you learned about LLMs or Transformers
• A question or idea you’d like to explore further
• An observation about how these models relate to real-world
NLP tasks

58

https://docs.google.com/presentation/d/1AngP81MK_OM56lAtKQ4XtfPiW2ejqFn6uGhsO09qVPk/edit?usp=sharing
https://docs.google.com/presentation/d/1AngP81MK_OM56lAtKQ4XtfPiW2ejqFn6uGhsO09qVPk/edit?usp=sharing


Sharing Thoughts

• Take a few minutes to share your thoughts or reflections on
today’s session.

• Contribute one or two points to the shared slide deck (click
here, or a link in the course website) - this could be:

• Something new you learned about LLMs or Transformers
• A question or idea you’d like to explore further
• An observation about how these models relate to real-world
NLP tasks

58

https://docs.google.com/presentation/d/1AngP81MK_OM56lAtKQ4XtfPiW2ejqFn6uGhsO09qVPk/edit?usp=sharing
https://docs.google.com/presentation/d/1AngP81MK_OM56lAtKQ4XtfPiW2ejqFn6uGhsO09qVPk/edit?usp=sharing


Sharing Thoughts

• Take a few minutes to share your thoughts or reflections on
today’s session.

• Contribute one or two points to the shared slide deck (click
here, or a link in the course website) - this could be:

• Something new you learned about LLMs or Transformers

• A question or idea you’d like to explore further
• An observation about how these models relate to real-world
NLP tasks

58

https://docs.google.com/presentation/d/1AngP81MK_OM56lAtKQ4XtfPiW2ejqFn6uGhsO09qVPk/edit?usp=sharing
https://docs.google.com/presentation/d/1AngP81MK_OM56lAtKQ4XtfPiW2ejqFn6uGhsO09qVPk/edit?usp=sharing


Sharing Thoughts

• Take a few minutes to share your thoughts or reflections on
today’s session.

• Contribute one or two points to the shared slide deck (click
here, or a link in the course website) - this could be:

• Something new you learned about LLMs or Transformers
• A question or idea you’d like to explore further

• An observation about how these models relate to real-world
NLP tasks

58

https://docs.google.com/presentation/d/1AngP81MK_OM56lAtKQ4XtfPiW2ejqFn6uGhsO09qVPk/edit?usp=sharing
https://docs.google.com/presentation/d/1AngP81MK_OM56lAtKQ4XtfPiW2ejqFn6uGhsO09qVPk/edit?usp=sharing


Sharing Thoughts

• Take a few minutes to share your thoughts or reflections on
today’s session.

• Contribute one or two points to the shared slide deck (click
here, or a link in the course website) - this could be:

• Something new you learned about LLMs or Transformers
• A question or idea you’d like to explore further
• An observation about how these models relate to real-world
NLP tasks

58

https://docs.google.com/presentation/d/1AngP81MK_OM56lAtKQ4XtfPiW2ejqFn6uGhsO09qVPk/edit?usp=sharing
https://docs.google.com/presentation/d/1AngP81MK_OM56lAtKQ4XtfPiW2ejqFn6uGhsO09qVPk/edit?usp=sharing


Wrap up



Wrap-up

• We explored recent advances in large language models
(LLMs) as of 2025.

• In the lab session, we will further experiment with these
models using Ollama, an open-source platform for running
LLMs locally.

59



Wrap-up

• We explored recent advances in large language models
(LLMs) as of 2025.

• In the lab session, we will further experiment with these
models using Ollama, an open-source platform for running
LLMs locally.

59


	Review: Transformer
	Different transformers
	LLMs in 2025
	Wrap up

