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Review: Transformer



Towards the development of the Transformer model.
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* RNNs process input step by step — each hidden state
depends on the previous one.

* GPUs are great at performing many independent
computations in parallel, but RNNs don't allow this because
future states can't be computed until past states are done.

* As a result, training RNNs on very large datasets becomes
slow and inefficient.
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Transformer and self-attention

« In Transformers, attention occurs within a single sentence —
all words attend to all words in the previous layer.
(Self-attention + Cross-attention)

* As a result, Transformers overcome both
long-distance dependency and lack of parallelizability.

* Notes. This was NOT an entirely new ways of looking NLP
problems (e.g., probabilistic language models — neural
network), but made a huge progress in the field.



The structure of the Transformer (Vaswani et al., 2017):
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We can see that the same kinds of blocks are repeatedly

stacked.
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Embedding layer
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Multi-head attention
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Add & Norm layer
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and also the Feed-Forward layer.

Feed
Forward

Feed
Forward

10



So, it's actually made up of a few components that are

repeatedly stacked.
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Which of these do you think is the most important feature of the
Transformer model?
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The Transformer’s multi-head attention is (1) different from the
attention mechanism used in traditional seq2seq models.
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The Transformer's attention (2) captures the relationships
between words within the same input sentence.

| like this NLP class a lot
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The structure of the multi-head attention mechanism used for
self-attention looks like this:
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We make three

copies of the input + positional encoding matrix.
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We make three copies of the input + positional encoding matrix.
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This is done to create Query (Q), Key (K), and Value (V) matrices,
each representing a different projection of the same input for the
attention mechanism.
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To obtain the Q matrix, we create the following 6x6 weight matrix
(randomly initialized).
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And then we perform matrix multiplication to obtain the Q
(Query) matrix.
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To compute the K (Key) matrix, we create another 6x6 weight
matrix (randomly initialized) and multiply it with the input.
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Using the same process, we perform another matrix
multiplication to obtain the V (Value) matrix.
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Now, we have the three inputs of the multi-head attention layer:
Q (Query), K (Key), and V (Value).
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Next, we perform the matrix multiplication between Q and K. The
formula for this operation is as follows:
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When we plug in the matrix values and calculate,
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we can obtain the result as follows:
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Next, we apply scaling, which divides the matrix by /6, since in
this example the value of d,,qe IS 6.
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The next softmax layer converts the matrix values into
probabilities.
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This 3x3 matrix represents the self-attention weights, which
shows how each word in the input is related to every other.

how are you
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Word pairs with higher relevance receive higher attention values,
while those with lower relevance receive smaller values. To be

specific...
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how are you
multiplication 034 ] 031]o3s
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035 | 0.31 | 034

3

* Each row: how much a query word attends to other words
(where it sends attention)

29



how are you
multiplication 034 ] 031]o3s

how
are oss o3z oss
you

035 | 0.31 | 034

‘
\4

s

* Each row: how much a query word attends to other words

(where it sends attention)
* Each column: how much a key words is attended to by other

words (where it receives attention)
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This self-attention mechanism is the core structure.
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So, what about the final matrix multiplication?
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We multiply this by the V matrix to obtain the final output — a
self-attended embedding that combines (1) input, (2) positional,

and (3) attention information.
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Focus on to the Decoder.
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The Masked Multi-Head Attention operation in the decoder is
almost the same as in the encoder.
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We multiply the Q and K matrices to create the attention matrix.
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We then scale the matrix by dividing it by v/6, just as before, so
that the range of values changes accordingly.
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0.00 | 0.04| 0.08

36



The goal of the transformer decoder is to generate the output
word sequence, one token at a time (recall: language modeling).
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While the encoder needs to consider all tokens in the input
sentence to understand the full meaning,

", Ilike this NLP class a lot
\‘ o

Mult-Head
Attention
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the decoder generates output one word at a time.

Mask (optional)

| like this NLP
Q K \%
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Therefore, it's natural that the decoder should NOT attend to
words that haven't been generated yet.

| like this NLP
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To reflect this characteristic, the decoder applies a masking
mechanism during training.
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The key idea is to hide future tokens so they do not affect the

current prediction.
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When this masking algorithm is applied to the attention matrix,

we get:
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We add -inf to the masked positions because, after passing
through the softmax layer, -inf becomes 0, effectively eliminating
attention to those positions.
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Feeding this matrix into the softmax layer gives us:
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Then we multiply the two matrices as follows:
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The decoder’'s second multi-head attention operates the same
way as the encoder’s, except for the inputs.

- Q K \
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Here, the values of K and V are derived from the encoder’s final
output, multiplied by a 6x6 matrix.
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The value of Q comes from the output of the decoder’s previous
Add & Norm layer. In other words, the decoder determines which
parts of the encoder’s output (K, V) to attend to, based on the
context it has generated so far (Q)-similar to attention in RNNs.
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Using a loss function (e.qg., cross-entropy) and backpropagation,
the model updates all weight parameters across every layer —
this is the learning process of the Transformer.
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Different transformers



Transformer types

+ Encoder-only models use only the encoder stack to
understand text.
* Bidirectional attention (see both left and right context)
+ Tasks: text classification, NER, POS tagging
* Examples: BERT, RoBERTa, ALBERT
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Transformer types

* Decoder-only models use only the decoder stack to
generate text.
* Left-to-right (causal) attention — cannot see future tokens
+ Tasks: text generation, dialogue, code completion
« Examples: GPT, LLaMA, Gemini, Claude
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Transformer types

* Encoder-Decoder models combine both for
sequence-to-sequence tasks.
* Encoder encodes the input; decoder generates the output
» Tasks: translation, summarization
* Examples: T5, BART, mBART
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LLMs in 2025



Sharing Thoughts

+ Take a few minutes to share your thoughts or reflections on
today's session.
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today's session.
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here, or a link in the course website) - this could be:
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* A question or idea you'd like to explore further
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Sharing Thoughts

+ Take a few minutes to share your thoughts or reflections on
today's session.

+ Contribute one or two points to the shared slide deck (click
here, or a link in the course website) - this could be:
+ Something new you learned about LLMs or Transformers
* A question or idea you'd like to explore further

* An observation about how these models relate to real-world
NLP tasks
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* We explored recent advances in large language models
(LLMs) as of 2025.
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* We explored recent advances in large language models
(LLMs) as of 2025.

+ In the lab session, we will further experiment with these

models using Ollama, an open-source platform for running
LLMs locally.
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