10. LLMs in 2025
LING-581-Natural Language Processing 1

Instructor: Hakyung Sung
October 28, 2025

Table of contents

1. Review: Transformer
2. Different transformers
3. LLMs in 2025

4. Wrap up

Review: Transformer

Towards the development of the Transformer model.

Muli-Head

Attention

Output
Probabilties

Add & Nomm
Feed
Forward

Add & Nomm
Muli-Head
Attention

Positional Posttional
Encoding Encoding
Thput Output
Embedding Embedding
Inputs uts

(shifted right)

RNNs: Lack of parallelizability

* RNNs process input step by step — each hidden state
depends on the previous one.

RNNs: Lack of parallelizability

* RNNs process input step by step — each hidden state
depends on the previous one.

* GPUs are great at performing many independent
computations in parallel, but RNNs don't allow this because
future states can't be computed until past states are done.

RNNs: Lack of parallelizability

* RNNs process input step by step — each hidden state
depends on the previous one.

* GPUs are great at performing many independent
computations in parallel, but RNNs don't allow this because
future states can't be computed until past states are done.

* As a result, training RNNs on very large datasets becomes
slow and inefficient.

Transformer and self-attention

« In Transformers, attention occurs within a single sentence —
all words attend to all words in the previous layer.
(Self-attention + Cross-attention)

Transformer and self-attention

« In Transformers, attention occurs within a single sentence —
all words attend to all words in the previous layer.
(Self-attention + Cross-attention)

* As a result, Transformers overcome both
long-distance dependency and lack of parallelizability.

Transformer and self-attention

« In Transformers, attention occurs within a single sentence —
all words attend to all words in the previous layer.
(Self-attention + Cross-attention)

* As a result, Transformers overcome both
long-distance dependency and lack of parallelizability.

* Notes. This was NOT an entirely new ways of looking NLP
problems (e.g., probabilistic language models — neural
network), but made a huge progress in the field.

The structure of the Transformer (Vaswani et al., 2017):

Output
Probabilities

Add & Norm

Feed
Forward
Add & Norm
—

LAdd & Norm) Multi-Head

Feed Attention
Forward 7 3 Nx

T

Add & Norm
Masked
Multi-Head

Add & Norm

Multi-Head

Attention Attention
T 7
Positional b L Pasitional
Encoding € Encoding
Input Qutput
Embedding Embedding

Inputs Qutputs

We can see that the same kinds of blocks are repeatedly

stacked.

Add & Norm
=

Feed
Forward

Output
Probabilities

Add & Norm
—— —

Feed
Forward

]
Add & Norm
e 1L,

Multi-Head
Attention Nx

i

))i

Add & Norm

Multi-Head

Add & Norm

Masked
Multi-Head

Positional
Encoding

Attention Attention
LY F
Positional
& Encoding
Input Output
Embedding Embedding
Inputs Outputs

Embedding layer

Positional Positional
Encoding Encoding

Input Output
Embedding Embedding

Inputs Outputs

Multi-head attention

Multi-Head
Attention
Masked

Multi-Head Multi-Head
Attention Attention

Add & Norm layer

" [Add & Norm

[Add & Norm] Add & Norm

Add & Norm
Add & Norm

and also the Feed-Forward layer.

Feed
Forward

Feed
Forward

10

So, it's actually made up of a few components that are

repeatedly stacked.

Add & Norm
=

Feed
Forward

Probabilities

Output

Add & Norm
—— —

Feed
Forward

1

Add & Norm
s e
Multi-Head

Attention

i)

F) }i

Nx

Add & Norm
Multi-Head

Multi-Head

Add & Norm

Positional
Encoding

Attention Attention
LY F
Positional
& Encoding
Input Output
Embedding Embedding
Inputs Outputs

11

Which of these do you think is the most important feature of the
Transformer model?

Output
Probabilities

Add & Norm
e
Feed
Forward
1 _J
Add & Norm
EERIRTRO] Multi-Head
FoFree:rd Attention Nx
b F)
T i
Add & Norm
Add & Norm Masked
Multi-Head Multi-Head
Attention Attention
LY F LY
Positional Positional
Encoding q Encoding
Input Output
Embedding Embedding
Inputs Outputs

12

The Transformer’s multi-head attention is (1) different from the
attention mechanism used in traditional seq2seq models.

(L7
~ P Gracias
B® et
‘Multi-Head ’—b ,..%‘ —— D \.‘.Fi -
1 I t 1
Thank you (EOS) (EOS)

13

The Transformer's attention (2) captures the relationships
between words within the same input sentence.

| like this NLP class a lot

14

The structure of the multi-head attention mechanism used for
self-attention looks like this:

15

We make three

copies of the input + positional encoding matrix.

-0.25] 1.86 [-1.38] 0.13-0.22) 2.72|

Fo.o7fo.z2| 226 1.52 | 0.35 | 0.80

16

We make three copies of the input + positional encoding matrix.

A
EEEEEE

EECEEn

& : H 7‘357“2 272
‘ = | Rl
:s E : H m
&= = =
=

-0.25] 1.86 [-1.38] 0.13-0.22) 2.72|

007 foa2| 2.26] 152 | 035] 0.80

[

This is done to create Query (Q), Key (K), and Value (V) matrices,
each representing a different projection of the same input for the
attention mechanism.

16

To obtain the Q matrix, we create the following 6x6 weight matrix
(randomly initialized).

037 037-0.19] 023 0.32] 021

0.30 f-0.09 | 0.35 [-0.10f-0.38] 0.21

o.25] 1.86 |-1.38] 0.13[-0.22) 272
0.22 [0.05 |0.09 J-0.23]0.09 f0.15

0.07f0.12| 226 1.52 | 0.35| 0.80
0.1 |-0.36]-0.23]-0.1f 0.21 |-0.07]

TCEDDE
; L
= TTTOTE

17

And then we perform matrix multiplication to obtain the Q
(Query) matrix.

— | rs6]-02s] 0sa]0s2]-131f 027

0.59 Jo.46]-025]-0.73) 0.47 | 0.19

To compute the K (Key) matrix, we create another 6x6 weight
matrix (randomly initialized) and multiply it with the input.

Q

1.56]-0.25] 054 | 0.52 [-131 027

0.59 |o.s|-025]-0.73) 0.47 | 0.19

m
-0.18]-0.28] 0.35 |-0.39] 030 [0.37

-0.25] 1.86 |-1.38] 0.13]-0.22] 272

0.00 |[-0.14}-035)0.12 Joo7 o0 1182|026 |-1.79)0.32 | 1.6

0.07f-0.12| 226 1.52 | 035 | 0.80

= |-0a42]-070]-0.56|-0.01] 0.32 |-0.28]
15|-0.32) 0.28 |-0.09] 0.09 |-0.18]

: X
ECEEEE

19

Using the same process, we perform another matrix
multiplication to obtain the V (Value) matrix.

1.56]-0.25] 0.54 | 0.52 [-131 027

0.59 |06 |-025]-0.73) 0.47 | 0.19

022 |-0.21]-030f-0.23]-0.35] 0.13

0.7 012022 0.10 f-0.22 |-0.38]

-o.25] 1.85 |-1.38] 0.13[-0.22) 272 -1.63 085 [-1.91[-0.47 | 0.25 |-1.38]

-0.15] 0.86 | 0.24] 1.23] 0.06 | 1.43

0.24]0.24 | 032 |-0.79]-0.05}1.04]

-0.10[-0.10f-0.14 f-0.30 |-0.26|-0.14

-0.67] 0.44 |-0.80|-0.65 -0.41| -1.09}

0.23] 024 |-0.14f 0.01 Jo.a1 Jo.06

[e

Now, we have the three inputs of the multi-head attention layer:
Q (Query), K (Key), and V (Value).

(| 1ss|-025) 054 | 052|131 0.27]

059 fo.as]-0.25]-0.73[0.47 | 0.19)

0.39-0.48] 0.03-0.16f-0.29
Softmax
11052 0.26 [-1.79] 0.32 [-1.66)
Mask (optional) -0.42]-0.70[-0.56]-0.01] 032 [-0.28
DEOIOD
; (o]

-1.63] 0.85 [-1.91 f-0.47] 0.25 |-1.38

(____/’/ 024034 [032|070 -005] 104
CEITEE

Next, we perform the matrix multiplication between Q and K. The
formula for this operation is as follows:

-1.56]-0.25] 0.54 | 0.52 | -1.31] 0.27]

0.59 |0.46-0.25]-0.73] 0.47 | 019!

nzguuz—uzu

-1.18[-0.52| 0.26 |-1.79] 0.32 |- 1.68

Q-K"

-0.42]-0.70|-0.56] -0.01 032 f-0.28

-1.63] 0.85 [-1.91 Fo.a7 [0.25 |-1.38

0.240.24 | 032 oo [-095f1.04

-0.67] 0.44 |-0.80 [-0.65] -0.41]-1.09)

22

When we plug in the matrix values and calculate,

--— - ~

P s

o] W[osaose[-131] 027

0.5 [os] B2s] 073 0.47] 019

| 4
|
v Kitransposed) ==m=—=
Q

Softmax

Mask (optional)

-0.25] 0.54 | 0.52[-131 027

-1.18]-0.52] 0.26 |-1.79f 0.32 [-1.68

-0.42]-0.70-0.56]-0.01] 0.32 |-0.28)

P

we can obtain the result as follows:

K (transposed)
Q it

= o6]o32]0a

064 [0.35 | 0.5

Mask (optional)

-0.52] |-
-1.56]-0.25 0.5¢ | 0.52[-1.31] 0.27]
Softmax
026
\

Next, we apply scaling, which divides the matrix by /6, since in
this example the value of d,,qe IS 6.

013001 fo1s

025|013 016

= [wfom]w] = vg =

064|035 | 054

026 |0.14 | 022

25

The next softmax layer converts the matrix values into
probabilities.

013001]os 034 031]o3s

Softmax(Py PN P) = [
T P P

031 .03 Jos7 \ 013|001

ok o) Q- KT = [wfae] = v = [

064 | 0.35 | 054

This 3x3 matrix represents the self-attention weights, which
shows how each word in the input is related to every other.

how are you

013001 os how [034 | 031035

SOftmax(0250.13 1016) = are [o3s|o32f033

026 J0.14 | 022 you o3s Joar

27

Word pairs with higher relevance receive higher attention values,
while those with lower relevance receive smaller values. To be

specific...

how are you
i] how [oaa oo

are [o36032 |03

you |oas|oai|o3e

how are you
multiplication 034] 031]o3s

how
are oss o3z oss
you

035 | 0.31 | 034

3

* Each row: how much a query word attends to other words
(where it sends attention)

29

how are you
multiplication 034] 031]o3s

how
are oss o3z oss
you

035 | 0.31 | 034

‘
\4

s

* Each row: how much a query word attends to other words

(where it sends attention)
* Each column: how much a key words is attended to by other

words (where it receives attention)

29

This self-attention mechanism is the core structure.

how are you
i] how [oaa oo
. are o3s o3z oss
i|_Softmax |:
Mask (optional)

you |oas|oai|o3s

025 1.86 |-1.38] 0.13|-0.22] 2.72

0.07 f0.12| 2.26| 1.52 | 0.35 | 0.80

-1.56]-0.25] 0.54 | 0.52 | -1.31) 0.27)

0.59 |-0.46|-0.25-0.73] 0.47 | 0.19

-1.18f-0.52] 0.26 |-1.76] 0.32 1.6}

-0.42]-0.70 -0.56]-0.01] 0.32 f-0.28

o o]

-1.63) 085 [-1.91 f-oa7 025 [-1.38

30

So, what about the final matrix multiplication?

-1.56]-0.25] 0.54 | 0.52 | -1.31) 0.27)

0.59 |o.46[-0.25)-0.73 0.47 | 0.10

how are you
0.39]-0.48 0.03]-0.16]-0.30] 0.16

how |0.34 | 0.31]03s

you [o.3s 031034 -1.18f-0.52] 0.26 |-1.79] 0.32 |-1.68]

-0.42]-0.70 -0.56]-0.01] 032 [-0.28

-0.77]-0.69] 0.09 [-0.85) 0.27 |-0.06|

We multiply this by the V matrix to obtain the final output — a
self-attended embedding that combines (1) input, (2) positional,

and (3) attention information.

how are you H
t e oes|rorfoarfoas el £ [ozoss [oss]-oes]oss]ra7

how o3¢ Joaross :
are [oseon]on X: o24foss Joszforsffossfrod] | = [orose o

you [oss[oa1 fosa :|—ns7|o.44}osnl—nsslruawl—v.nsl:

-1.18

32

Focus on to the Decoder.

Output
Probabilities

& Positional

Outputs

33

The Masked Multi-Head Attention operation in the decoder is
almost the same as in the encoder.

0.15] 037|021 fo.24] 0.37]-0.03 Q

-0.21] 0.24 028} 0.06 | 0.40 | 0.01

0.79f-1.0410.74] 0.87 |-0.8¢-0.37
034 031 [-0.13|-0.24f 0.12] 015

EEEED

|3,69|*0.2110,2AI»DJA|»0,57| 0.67| X ozfoos|oos forr| ora]oss] = |os61]1.66 }1.011.091.23}0.24

EEM 039)-0.22] 0.21 [021 | 009 |01

-0.15}0.33)-0.12]-0.30}-0.33| 0.06- K
0.10 0.26 | 030 | 0.33 | 0.08 f0.24
Softmax -2.31-0.29 0.21}-0.24] 1.86|1.06| 0.31}0.54 0.64] 0.25| 0.94}-0.1
0.1 fo.16|-0.01] 032] 0.11 Jo.02
3.69}-0.24 0.24f-0.34-057) 0.67| X = |o.2¢1.21}-0.98-1.24}0.94f-0.04
Mask (optional) -0.0s] 0.01f0.32 [-0.31] 0.09] 0.10

-0.1¢]-0.08 030 f-0.03|-0.11] 0.14

0.23] 0.05 |-0.20]-0.40] 0.38]-0.29|

Watrix

multipication 028012 Jot0f-0.12)-0.17f 03

Q K v|23t029021f0.24)1.86|1.06 0200190 37p0.16]0.15 024 I1.14-0.23]0.05|0.700.15[0.16

013]-0.11|-038) 038 027 0:33

3.69}-0.24 0.24}-0.34-0.57] 0.67] X - 1.33]0.36[0.12-0.66-0.71}1.34]

-0.23] 0.28 [-0.20[0.1 |-0.27] 0.07

-0.33] 0.03[-0.21] 0.29 f-0.02} 0.07

0.04 0.02 |0.13 fo.20 |-0.15]-0.3¢]

34

We multiply the Q and K matrices to create the attention matrix.

(sos)
|

am
trix

multiplication
Softmax
Mask (optional)

Tt
multiplcation

(sos) |

QK"

am

03] 0.01

1.37 1.0

000] 011

Q

0.79}-1.040.74]0.87|-0.8¢-0.37

0.61]1.66 [-1.01[-1.031.23 }-0.2¢

0.31}0.54 | 0.64| 0.25] 0.94f-0.13]

0.26-1.21]-0.98-1.24+0.94}-0.04

EITIOE

EEEmmD

35

We then scale the matrix by dividing it by v/6, just as before, so
that the range of values changes accordingly.

(sos) 1 am -0.13] 0.00]-0.26
1 {sos)|-0.33| 0.01 |-0.63]
T 1 ape]e] = 6 = 0.56 |-0.43| 0.42
P) 1
0.00 | 0.04| 0.08

36

The goal of the transformer decoder is to generate the output
word sequence, one token at a time (recall: language modeling).

Matrix
multiplication

e« / This is an awesome
° sentence that was
]
T o
e ®
=
T 1
multiplication
Q K Vv

37

While the encoder needs to consider all tokens in the input
sentence to understand the full meaning,

", Ilike this NLP class a lot
\‘ o

Mult-Head
Attention

38

the decoder generates output one word at a time.

Mask (optional)

| like this NLP
Q K \%

39

Therefore, it's natural that the decoder should NOT attend to
words that haven't been generated yet.

| like this NLP

40

To reflect this characteristic, the decoder applies a masking
mechanism during training.

=
PR ;
e
L
multiplication

Q K \

41

The key idea is to hide future tokens so they do not affect the

current prediction.

Matrix
multiplication

42

like

Mask (optional)

like

43

rmultiplication

Softmax
Mask (optional)

like

this

NLP

class

lot

like this

NLP class

a

lot

44

rmultiplication

like

this

NLP

class

lot

SO

like this

NLP class

a

lot

SO

45

When this masking algorithm is applied to the attention matrix,

we get:

(sos) | am -0.13] 0.00|-0.26

(sos)|-0.33| 0.01 -3}

= V6 = [0.56|-0.43] 0.42

137 f1.0a]1.02

Wiatiix
multiplication
am |ooo]oarfoz
Softmax 0.00
Mask (optional)

0.04] 0.08

46

We add -inf to the masked positions because, after passing
through the softmax layer, -inf becomes 0, effectively eliminating
attention to those positions.

—

Mask (optional) |2
Wl Head i

ol

i thon scaling

-

trix
Q K Vv

[ool

EETTEE
EREEDE

1
Thttps://www.youtube.com/shorts/SrJN_hpiuAs

https://www.youtube.com/shorts/SrJN_hpiuAs

Feeding this matrix into the softmax layer gives us:

i Sofima
scaling

O

WS
Muli-Head
‘Attention

.

-1.19-0.23]0.05]0.70|0.150.16

1.33]0.36-0.12}-0.66-0.71} 1.34]

CETETE

48

Then we multiply the two matrices as follows:

.
multiplication _J}

[-1.19-0.23]0.05]0.700.15]0.16|

[-0.51f-0.07] 0.00] 0.33 |-0.08}-0.2

|0.1 5 |0,08 |0.12 |:0A1 1F0A2;|:0.58|

Mask (optional)
- Head
ui-He i
oo scaling

:
Q K \

EEEmmm

EEETOE
CENETE

49

The decoder’'s second multi-head attention operates the same
way as the encoder’s, except for the inputs.

- Q K \

50

Here, the values of K and V are derived from the encoder’s final
output, multiplied by a 6x6 matrix.

mum ionion

‘
Vv

Mask (optional)
scaling

WEFesd

tenion

- - Q K
-1.01] 1.48 [-0.89|-0.24f-0.60] 1.26 -1.01) 1.48 | 0.89|-0.24f-0.60] 1.26
-1.41f-0.02] 1.33 | 1.13 | -0.29] 015 -1.41f-0.92] 1.33] 1.13 |-0.29] 015
-1.81) 057 |-0.24] 0.89|-0.53] 1.12 -1.81] 0.57 |-0.24] 0.89|-0.53] 1.12

51

The value of Q comes from the output of the decoder’s previous
Add & Norm layer. In other words, the decoder determines which
parts of the encoder’s output (K, V) to attend to, based on the
context it has generated so far (Q)-similar to attention in RNNs.

multiplication_

|-1.69]-0.04-0.21-0.42] 1.37 | 1.02

_______ ¥ |2.13}0.37}-0.24-0.71]-0.84 0.10|

multiplication_ -
= 1" : eolbd o
= —
= | Q K v
1.69}-0.084-0.201-0.44 1.37 | 1.02
2.13}0.370.29}-0.71f-0.85{0.10
0.760.70J0.23 }0.821.16]1.69

52

Using a loss function (e.qg., cross-entropy) and backpropagation,
the model updates all weight parameters across every layer —
this is the learning process of the Transformer.

0.32] 0.05 | 0.07 | 0.07 | 0.06] 0.04 | 0.03] 0.08 | 0.11 | 0.08 0,12

009 013] 0.03| 0.10] 0.02 0.23| 0.04 | 0.14] 010 0.04| 0.08

e !
028 0,05 003 [0.06 |01 o1 [0.02] 014 [0.11 [03] 008 < >

Output [3] am

Probabiltes T [4] fine

Softmax

162 |-0.30] 0.14 | 0.13 |-0.09}-0.35}-0.71 | 0.19 | 0.57|-0.41| 0.64

0.08) 0.46|-0.89] 0.22 |-1.33| 1.06 | -0.73] 0.56 | 0.25 |-0.71] 0.05

e

Linear Layer

53

Different transformers

Transformer types

+ Encoder-only models use only the encoder stack to
understand text.
* Bidirectional attention (see both left and right context)
+ Tasks: text classification, NER, POS tagging
* Examples: BERT, RoBERTa, ALBERT

55

Transformer types

* Decoder-only models use only the decoder stack to
generate text.
* Left-to-right (causal) attention — cannot see future tokens
+ Tasks: text generation, dialogue, code completion
« Examples: GPT, LLaMA, Gemini, Claude

56

Transformer types

* Encoder-Decoder models combine both for
sequence-to-sequence tasks.
* Encoder encodes the input; decoder generates the output
» Tasks: translation, summarization
* Examples: T5, BART, mBART

57

LLMs in 2025

Sharing Thoughts

+ Take a few minutes to share your thoughts or reflections on
today's session.

58

https://docs.google.com/presentation/d/1AngP81MK_OM56lAtKQ4XtfPiW2ejqFn6uGhsO09qVPk/edit?usp=sharing
https://docs.google.com/presentation/d/1AngP81MK_OM56lAtKQ4XtfPiW2ejqFn6uGhsO09qVPk/edit?usp=sharing

Sharing Thoughts

+ Take a few minutes to share your thoughts or reflections on
today's session.

+ Contribute one or two points to the shared slide deck (click
here, or a link in the course website) - this could be:

58

https://docs.google.com/presentation/d/1AngP81MK_OM56lAtKQ4XtfPiW2ejqFn6uGhsO09qVPk/edit?usp=sharing
https://docs.google.com/presentation/d/1AngP81MK_OM56lAtKQ4XtfPiW2ejqFn6uGhsO09qVPk/edit?usp=sharing

Sharing Thoughts

+ Take a few minutes to share your thoughts or reflections on
today's session.

+ Contribute one or two points to the shared slide deck (click
here, or a link in the course website) - this could be:

+ Something new you learned about LLMs or Transformers

58

https://docs.google.com/presentation/d/1AngP81MK_OM56lAtKQ4XtfPiW2ejqFn6uGhsO09qVPk/edit?usp=sharing
https://docs.google.com/presentation/d/1AngP81MK_OM56lAtKQ4XtfPiW2ejqFn6uGhsO09qVPk/edit?usp=sharing

Sharing Thoughts

+ Take a few minutes to share your thoughts or reflections on
today's session.

+ Contribute one or two points to the shared slide deck (click
here, or a link in the course website) - this could be:

+ Something new you learned about LLMs or Transformers
* A question or idea you'd like to explore further

58

https://docs.google.com/presentation/d/1AngP81MK_OM56lAtKQ4XtfPiW2ejqFn6uGhsO09qVPk/edit?usp=sharing
https://docs.google.com/presentation/d/1AngP81MK_OM56lAtKQ4XtfPiW2ejqFn6uGhsO09qVPk/edit?usp=sharing

Sharing Thoughts

+ Take a few minutes to share your thoughts or reflections on
today's session.

+ Contribute one or two points to the shared slide deck (click
here, or a link in the course website) - this could be:
+ Something new you learned about LLMs or Transformers
* A question or idea you'd like to explore further

* An observation about how these models relate to real-world
NLP tasks

58

https://docs.google.com/presentation/d/1AngP81MK_OM56lAtKQ4XtfPiW2ejqFn6uGhsO09qVPk/edit?usp=sharing
https://docs.google.com/presentation/d/1AngP81MK_OM56lAtKQ4XtfPiW2ejqFn6uGhsO09qVPk/edit?usp=sharing

Wrap up

* We explored recent advances in large language models
(LLMs) as of 2025.

59

* We explored recent advances in large language models
(LLMs) as of 2025.

+ In the lab session, we will further experiment with these

models using Ollama, an open-source platform for running
LLMs locally.

59

	Review: Transformer
	Different transformers
	LLMs in 2025
	Wrap up

